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We investigate correlated binary sequences using an n-tuple Zipf analysis, where we define “words”
as strings of length n, and calculate the normalized frequency of occurrence w(R) of “words” as a
function of the word rank R. We analyze sequences with short-range Markovian correlations, as
well as those with long-range correlations generated by three different methods: inverse Fourier
transformation, Lévy walks, and the expansion-modification system. We study the relation between
the exponent a characterizing long-range correlations and the exponent { characterizing power-
law behavior in the Zipf plot. We also introduce a function P(w), the frequency density, which is
related to the inverse Zipf function R(w), and find a simple relationship between ¢ and 1, where
w(R) ~ R™¢ and P(w) ~ w™¥. Further, for Markovian sequences, we derive an approximate form
for P(w). Finally, we study the effect of a coarse-graining “renormalization” on sequences with

Markovian and with long-range correlations.

PACS number(s): 05.40.+j

I. INTRODUCTION

Two topics of current research in statistical mechanics
are long-range correlations and Zipf analysis. Stochastic
processes with long-range power law correlations have
been observed in many systems. Examples are critical
phenomena [1], Lévy walks [2], DNA sequences [3-5],
heartbeat intervals [6], natural languages [7], and frac-
tional stochastic processes [8].

Complex systems have been studied using the Zipf
analysis, originally introduced in the context of natural
languages [9]. In conventional Zipf analysis, one calcu-
lates the normalized occurrence w of each word in a given
text, and assigns a rank R to each word, with R = 1 be-
ing the most frequent, R = 2 the second most frequent,
and so on. A Zipf plot is a log-log plot of the function
w(R), and for natural languages approximates a straight
line of slope roughly —1. Zipf analysis has also been ex-
tended to other systems [10], such as the distribution of
city sizes [11], DNA base pair sequences [12], and the size
distribution of industrial firms [13,14].

In this paper we investigate the relation between cor-
relations in binary sequences (“texts”) and a modifica-
tion of Zipf analysis termed n-tuple Zipf analysis. Un-
like conventional Zipf analysis, the words are n-tuples,
i.e., strings of length n. We study model sequences with
both Markovian (short-range correlated) and long-range-
correlated sequences generated by three methods of cur-
rent interest [15-17].

In Sec. IT we discuss Zipf analysis and introduce the
quite different n-tuple Zipf analysis. In Sec. III we intro-
duce a function, the frequency density, which is related
to the inverse Zipf function. Section IV is devoted to the
study of Markovian sequences. Section V applies the n-
tuple Zipf analysis to long-range correlated sequences. In
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Sec. VI we discuss the effects of a coarse-graining “renor-
malization,” while in Sec. VII we study the relation be-
tween ( and the long-range correlation exponent a.

II. N-TUPLE ZIPF ANALYSIS

For texts of natural languages, a basic unit is defined:
the word. A word is a string of characters between two
separators (usually “space” and/or punctuation marks).
For all the nontechnical natural languages studied, the
histogram of word occurrence w vs rank R decreases ap-
proximately as a power law:

w(R) ~ R, (1)

with an exponent ( ~ 1 [9]. Since there exist “texts”
(long strings of characters carrying information) that are
not comprised of natural words, it is of interest to modify
the Zipf analysis, by defining a “word” to be an n-digit-
long string of the text. In this case the set of possible
words is finite, e.g., for binary sequences, there exist N =
2™ different n-tuples.

To carry out this n-tuple Zipf analysis, we move a win-
dow of length n along the sequence, one character at a
step [18], and record the occurrence of each n-tuple. We
calculate the normalized frequency of occurrence w(R),
where

N

S w@® =1 2)

R=1

In the case of a long unbiased sequence, where each sym-
bol is an independent random variable, all possible n-
tuples approach the same frequency 1/N, so the Zipf plot

446 ©1995 The American Physical Society



52 CORRELATIONS IN BINARY SEQUENCES AND A ... 447

1072} =4 (a)

w(R) —g
1041 -

1 10 100 1000
R

FIG. 1. (a) Zipf plot (frequency vs rank) of a Markovian
sequence with transition probability o(1,1) = 0.80. Solid line:
values obtained from numerical calculations, dashed line with
squares: calculated using Eq. (6). (The steps are due to the
fact that w is determined by the number of consecutive digit
pairs with both digits different, hence many words have the
same frequency of occurrence.) Note that w(R) is normalized
by Y pw(R) = 1. (b) Zipf plots of long-range correlation
sequences generated by three different methods having the
same exponent o = 0.80 £ 0.02. From the top to the bottom
we have IFT, Lévy, and EMS sequences; for purposes of clar-
ity, the three curves are offset by a constant amount. Similar
power-law behavior is observed in the Zipf plot in the interval
(10, 300) for all the curves.

becomes horizontal and { = 0.

Markovian and long-range correlated (LRC) sequences
have an interesting profile. In Fig. 1 we show Zipf plots
for Markovian and long-range correlation sequences, with
n = 12 (so the total number of the words is N = 212 =
4096) [19]. For the Markovian case, a steplike plot is
found, whereas for the long-range correlation case, the
Zipf plot displays approximate power-law behavior in the
interval 10 < R < 300.

III. FREQUENCY DENSITY AND THE INVERSE
ZIPF FUNCTION

A second useful quantity can be calculated from the
analysis outlined above: the frequency density function
P(w), where P(w)dlogw is the probability of finding an
n-tuple with logarithmic frequency between logw and
logw + dlogw. The frequency density P(w) and the in-
verse Zipf function R(w) are related by

0
R(w) = N/ P(w')dlogw'. (3)

In general, P(w) is not monotonic. However the tail of
P(w) is related to the function w(R), since from (3), we
note that if w(R) ~ R™¢, then P(w) ~ w™¥, when the
exponents ¢ and ¥ are related via

¥ =1/C. (4)

Our numerical simulations show that the tails of this dis-
tribution are well approximated by power law for long-
range correlated sequences. Although w(R) and P(w) are
mathematically related, P(w) is of theoretical interest be-
cause it does not require the concept of rank. Moreover,
P(w) can be approximated analytically for the case of
Markovian texts, as we shall see in the following section.

IV. UNBIASED MARKOVIAN SEQUENCES

First we investigate the Zipf function w(R) for an un-
biased binary Markovian sequence. Denote the digit in
position 7 of the sequence by d;, where d; can have the
values 0 or 1. For the simplest Markovian sequence, the
probability distribution of digit d; is determined only by
digit d;—;. We denote by g(u,v) the conditional prob-
ability that a certain digit v follows another digit w.
For unbiased binary sequences p(0,0) = o(1,1) = p and
o(1,0) = o(0,1) = ¢, with p + ¢ = 1. If each digit is
an independent random variable, then p = 1/2, while
if p > 1/2 > q short-range Markovian correlations are
present. The probability p;(v) that the digit d; is v is
given by

pi(v) = o(u,v)pi-1(u) + o(v, v)Pi-1(v). (5)

To calculate the Zipf function w(R), we first calculate
the frequency w of a given n-tuple, which depends only
on the number k of consecutive digit pairs in that word
with both digits different:

wi = %qkp"-l-k [k=0,1,...,n—1]. (6)

The number of such words is

Nk=z<";1). (7)

For correlated sequences, it follows from (6) that wj >
wg+1. The ranks of the A} words occurring with a fre-
quency wg are in the interval

k—1 k
SN DN (8)
7=0 7=0

Figure 1(a) compares the results of a single simulation
of a sequence comprising L = 10® digits for words of
length n = 12 with the exact results of Eqgs. (6)—(8).
The probability Px = N /N of finding a word with a
frequency wy is
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Pr = (" . 1) g=(n-1); (9)

We next introduce a new parameter —1 < k < 1 de-
fined by

2k _
n—1

1, (10)

and express kK and n — 1 — k in terms of k:

n—1
2

(1 - k).
(11)

Substituting (11) into (9), and applying Stirling’s ap-
proximation for n > 1 and k < 1, we find

k:P——;—l(1+/~t) and n—-1-k=

n- 1fc2 + O(n4).

logP(k) = — (12)

To relate P(k) to P(w), we substitute (11) into Eq. (6)
and find that logw is linear in x,

n—1
2

(log g + logp + x(log ¢ — log p)] — log 2,
(13)

logw, =

Thus the approximate probability density P(w) of
Markovian sequences on a double-logarithmic plot is a
parabola [20]. In Fig. 2(a) we show Eq. (12) (solid line)

(a) A
-05f ]
logigP(w) | 1
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logigP(w) 1 o 1
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o
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FIG. 2. P(w) is the probability density of the number of
words with a frequency in the interval log w and log w+dlog w.
(a) For a Markovian sequence: the solid line is the parabola
given by Eqs. (12) and (13) while the squares represent the
measured values. (b) For a long-range correlation sequence
generated by IFT with o = 0.74 power-law decay is observed
in the tail. The straight line is the best fit in the interval
(107*,1072), its inverse slope is 1/x = 0.66, close in the mea-
sured value ¢ = 0.64, in agreement with Eq. (2) (see Fig. 3).

together with the values obtained from a simulated se-
quence of length 10° digits. In our simulations, we varied
p in the interval (0.5,0.9). The agreement between the
approximation and numerical simulations is quite good.
From numerical simulations we note that Markovian se-
quences did not show power-law behavior in the wings
of the P(w) function. Since P(w) is not a power law,
Eq. (3) implies that R(w) [and hence w(R)] is also not a
power law [21].

V. LONG-RANGE CORRELATED SEQUENCES

We generate long-range correlation sequences by using
three different algorithms, each of which is described in
Appendix A:

a. Inverse Fourier transformation (IFT) [3,15,22-24],
b. Lévy walks [16], and
c. The expansion-modification system (EMS) [17].

Long-range correlated sequences are characterized by
the correlation exponent a [6]. We measure o by calcu-
lating the average width w(#) of a digitized walk in a win-
dow of length £, and using the scaling relation w(£) ~ £
[3]. In Appendix A, we also show that the IFT and Lévy
methods yield sequences of real numbers z(t) sampled
with a fixed interval At, from which we obtain the cor-

1000 2000 3000 4000
R

FIG. 3. Comparison of the Zipf plot of a long-range cor-
relation (IFT) sequence with @ = 0.74 with its Markovian
approximation where p(1,1) = 0.65 (shifted to allow compar-
ison). (a) Double logarithmic scale: A power-law decay over
3 decades with { = 0.64 is observed in the case of long-range
correlation sequences. The straight line is the best fit in the
interval (1,1000). For better visualization the Markovian plot
is shifted down by one decade. (b) Log-linear scale: Differ-
ences between the long-range correlated (smooth line) and
the Markovian (jagged line) sequence are more relevant for
the most and least frequent words only.
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responding binary sequences d; using

& = { 1 if z((i + 1)At) > z(iA¢), (14)
" T 0 if z((2 + 1)At) < z(iA%).
In Fig. 3, the Zipf plot of a long-range correlation se-
quence generated by IFT is compared with its Markovian
approximation, i.e., a Markovian sequence having the
same conditional probabilities g(¢,7) as the long-range
correlation sequence possesses. Numerical simulations
show that the long-range correlation sequence is better
fit by a power law than the Markovian approximation.
We also found a power-law behavior in the wings of the
frequency density P(w) [Fig. 2(b)], and the measured val-
ues of the fitted slopes v satisfy Eq. (4). However, if we
examine the two functions on a log-linear scale [Fig. 3(b)],
we notice that most of the Zipf plot of the long-range cor-
relation sequence is determined by the Markovian prob-
abilities alone, and the long-range correlated nature in-
fluences mainly the frequency of the most-frequent and
least-frequent words.

VI. COARSE GRAINING

In order to better distinguish between long-range
correlated and Markovian sequences, we suggest the
following renormalization procedure. We perform
a series of coarse-grainings on the original d; se-
quence. In each course graining step we replace the
triplets {111,110,101,011} with “1” and the triplets
{000, 001,010,100} with “0” (“majority rule”).

We expect that for scale-invariant structures (such
as power law long-range correlated sequences), the sta-
tistical properties—including the Zipf plot—should not
change after the application of coarse graining. In con-
trast, for Markovian sequences this renormalization pro-
cedure eliminates the short-range correlations. In fact,
we show in Appendix B that the p(u,v) transition prob-
abilities of the Markov matrix of the renormalized se-
quences converge to 1/2 after a few coarse-graining steps.

In Fig. 4 we show typical Zipf plots after the nu-
merical renormalization procedure. The Zipf plots of
the coarse-grained Markovian sequence approach a hor-
izontal line [Fig. 4(a)], while the long-range correlation
sequences show stable slopes after 2-3 renormalization
steps [Figs. 4(b)-4(d)]. Note, that in Figs. 4(c) and 4(d) a
power-law behavior is observed only after the first coarse-
graining step. This observation reflects a peculiarity of
the Lévy and EMS sequences, for which a strong short-
range correlation is also present, which is already de-
stroyed almost completely after the first coarse-graining
step.

To characterize the deviation from the pure power-law
behavior, we study (Fig. 5) a “local exponent” ar(£),
which is the logarithmic derivative of the width W (z):

_ (dlog W (z)
ar(f) = (—_dlogm )m:t- (15)

For an ideal long-range correlation sequence az(f) = «
= const. For Lévy sequences, however, ay () for small

1 10 100 1000

10 100 1000
R

FIG. 4. Zipf plots obtained by consecutive renormaliza-
tions. (a) Markovian sequence with p(1,1) = 0.65, the coarse
graining destroys the correlations and the curve converges to
a horizontal line, corresponding to the Zipf plot of a random
sequence that is uncorrelated and unbiased. If the sequence
is long-range correlated [IFT, a = 0.74 (b); Lévy, a ~ 0.9
(c); and EMS, a = 0.87 (d)], the renormalization procedure
leads to a power-law Zipf plot. In the cases of (c) and (d)
strong short-range correlations are present in the original se-
quences, so that the power-law behavior of the Zipf plots can
be observed only after a few coarse-graining steps.

£ (£ =~ 10) is larger than the asymptotic value [see
Fig. 5(b)]. Due to this strongly correlated behavior at
short range, some words do not occur in the finite se-
quence studied, thereby strongly affecting the Zipf plot.
After a few coarse grainings the asymptotic behavior be-
comes dominant, and the Zipf plots [Fig. 4(c)] show a
power-law behavior characterized by a constant (.
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FIG. 5. Local o as a function of the window length £ for
different long-range correlated sequences: (a) IFT, (b) Lévy,
and (c) EMS. Different lines refer to consecutive renormaliza-
tion steps. The initial value of az (low values of £) is affected
by the strong short-range correlations in (b) and (c). The
asymptotic value of ay is affected by the finite size of the
sequence in (b).

VII. CONNECTION BETWEEN ¢( AND «

Next we investigate the relationship between the Zipf
exponent ¢ and the long-range correlation exponent a. In
the Zipf analysis, we used a word length of 12 bits, which
provided large enough scaling regime in the Zipf plot,
and did not require extremely long sequences to minimize
finite-size effects. To measure (, we fitted with power law
the frequency vs the rank on different intervals, typically
between 3 and 300. The difference between the values
measured on the same sequence but on different fitting
intervals gives an estimate for the error of the exponent,
which is about 10%. In all cases, we confirmed that that
the lengths of our sequences are long enough to exclude
finite-size effects. The typical length of the sequences
used in the measurement was 3 x 106-107 digits and we
could observe relevant finite-size effects only below the
length scale of 10* digits [19]. The results are shown in
Fig. 6, where we plot the values of the exponent ¢ vs a.

o ©
1.0

0.75
0.5

0.25}

05 06 07 08 08 1
a

FIG. 6. Numerical investigation of the connection between

the exponents a and ( for long-range correlation sequences

(IFT O, Lévy x, and EMS ¢), applying one or more renor-

malization steps. The estimated error of the exponents ( is

about 10%. The solid line represents the conjectured “bound”
(=2a—-1.

VIII. CONCLUSIONS

The numerical study of the relation between o and ¢ in
sufficient long-range correlated binary sequences seems to
suggest a simple relation between these two parameters.
However, the correlation exponent « and the Zipf expo-
nent ¢ in long-range correlated binary sequences provide
information on quite different scales: « is obtained by
investigating the scaling properties over the entire length
of the sequence, whereas ( is obtained by investigating a
“short-range” property, the frequency of n-tuples. Our
study shows that the long-range correlation exponent o
may be related to the exponent ( measured by the n-
tuple Zipf analysis, provided corrections-to-scaling terms
are very small so that a;, &~ a over a wide range of scales.

The literature has addressed the problem that the
power law observed by performing Zipf analysis can be
shallow [10,25]. In fact, a trivial power law is observed
in random text if one selects a character as “space” and
performs the Zipf analysis [25]. However, this conclusion
does not apply to our n-tuple word definition. In our
analysis, we do not have a “space” and the n-tuple Zipf
analysis of an unbiased random sequence gives ¢ = 0.

On the other hand, an n-tuple Zipf analysis of a
Markovian sequence can give results roughly similar to
the one observed for long-range correlated sequences.
This is due to the fact that short-range correlated se-
quences can mimic the local behavior of the long-range
correlated sequences. However by introducing a coarse-
graining procedure of the binary texts we are able to dis-
tinguish between Markovian and long-range correlation
texts. In fact only for long-range correlation sequences
is the power-law behavior observed after several coarse-
grainings.
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APPENDIX A: METHODS OF GENERATION
LONG-RANGE CORRELATION SEQUENCES

1. Inverse Fourier transform (IFT)

A sequence of real numbers z(t) is generated by inverse
Fourier transforming a sequence of complex numbers

u(f) = |FI7%2n(f), (A1)

where 7(f) is a Gaussian stochastic noise of amplitude A
obeying the conditions

(n(f))=0 (A2)
and

(n(f)m*(f)) = A%8(f — ),

where the symbols { ) indicate averages over different
realizations of the noise. The correlation exponent is re-
lated to the parameter 8 through the relation

a=(1+p)/2.

(A3)

(A4)

2. Lévy walk

Lévy walks show also long-range correlated behavior
on a sufficiently large time (length) scale. The general
form of the probability density of a jump of length r in
the time interval (¢,t + dt) in a Lévy walk is

o(r,t) = Cr=H#§(r — t¥), (A5)

where t is the time needed to perform a jump to the
distance of r. We have to convert the z(t) coordinates of
the Lévy walk into binary sequences, so we set v = 1 to
have a constant velocity, and discretized both time and
the possible length of the jumps. The resulting z'(t) walk
can be identified with the walk of the binary sequence d;.
It is possible to tune a in the range of (0.55,0.9) varying
¢ in the interval (2, 3).

3. Expansion-modification system (EMS)

Li’s expansion-modification system is especially suit-
able for our purposes as it provides binary sequences and
we do not have to face the digitization problem. We

applied the following recursive rule to build up binary
strings (discussed by Li in detail): In one step we sub-
stitute each digit “1” by the string “00” or “11” with
probabilities p and 1 — p; while each digit “0” by strings
“10” or “00” with probabilities ¢ and 1 — g, respectively.
As we consider unbiased sequences only, this yields to
the constraint 2¢ = p. Using this method we were able
to generate sequences with a typical length of 8 million
digits, tuning a with ¢ in the range from a =~ 1 (where
g ~ 1) to a =~ 0.5 (where g =~ 0.25).

APPENDIX B: RENORMALIZATION
PROCEDURE ON MARKOVIAN SEQUENCES

We show that the conditional probabilities p(u,v) of
the renormalized sequences converges to 1/2 during the
consecutive coarse-graining steps using a somewhat sim-
pler rule than the majority rule used in the text, viz.,
replacing the doublets {11,10} with “1” and the dou-
blets {00,01} with “0.” We denote by prime the appro-
priate variables for the renormalized sequence, and by
Pk, k+1(u, v) the probability having a digit » and v at po-
sition k and k + 1, respectively. By definition the Marko-
vian probability of the coarse-grained sequence is

(P11 (1, 1))k
Pk (1))

As we consider unbiased sequences (this symmetry is kept
by the renormalization rules), (p}(1))x = 1/2. Using
the coarse-graining rules we can express (p; ;. ;(1,1))x
by the appropriate word frequencies of the original d(%)
sequence:

0(1,1) = (B1)

(B2)

<P;,k+1(17 1)) = w1111 + w1110 + w1011 + Wio10,

where w;;r; represents the frequency of the word “ijkl.”
If p = p(1,1) is given, then we can easily calculate these
probabilities:

(Prrrr(L D)k = 5 (0® +P*a +pg® + %), (B3)

where ¢ = 1 — p. Writing both p and p’ in the form
of 1/2 + € and 1/2 + €, respectively, we can derive the
recursion rule for e:

(B4)
which simplifies to
e =262 (B5)

This recursion leads to lim,_, . €™ = 0, and the conver-
gence is faster than exponential.
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